Skip to contents

Estimators for the \(w\) and \(z\) statistics used in extinction probability calculations under a density-independent population model.

Usage

w_statistic(mu, xd, s, th)

z_statistic(mu, xd, s, th)

Arguments

mu

numeric: Estimated population growth rate, \(\hat{\mu}\).

xd

numeric: Distance to extinction threshold on a log scale, \(x_d = \log(n_q / n_e)\).

s

numeric: Estimated environmental variance, \(\hat{\sigma}^2\).

th

numeric: Time horizon for extinction probability evaluation, denoted \(t^{\ast}\).

Value

numeric: Value of the statistic.

Details

The statistics are defined as $$ \hat w = \frac{\hat \mu t^{\ast} + x_d}{\sqrt{\hat \sigma^2 t^{\ast}}}, \qquad \hat z = \frac{- \hat \mu t^{\ast} + x_d}{\sqrt{\hat \sigma^2 t^{\ast}}}. $$

Author

Hiroshi Hakoyama, hiroshi.hakoyama@gmail.com